REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of information including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188.) Washington, DC 20503. | 1. AGENCY USE ONLY (Leave Blank) | | 3. REPORT TYPE AT | ND DATES COVERED | | |---|---------------------------------|--|--|--| | | 12/12/00 | Final a | 1998-30JUN 99 | | | 4. TITLE AND SUBTITLE | | 5. FUNDING NUMB | | | | 4. THEE AND SUBTILLE | | 3. 101.bit.o.101 | | | | In Vivo Incorporation of | of Unnatural Amino Acids Into I | Proteins DAAG55~ | 98-1-0467 | | | 6. AUTHOR(S) | | | | | | Dr. Peter G. Schultz | | | | | | 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) | | 8. PERFORMING OF | 8. PERFORMING ORGANIZATION REPORT NUMBER | | | The Grippo Possess Totileto UC BERKECEY | | | | | | | BERKELEY | CA | | | | 9. SPONSORING / MONITORING AGI | ENCY NAME(S) AND ADDRESS(ES) | 10. SPONSORING / I
AGENCY REPOR | | | | U. S. Army Research Office | | | | | | P.O. Box 12211 | | ARO 37 | 566.1-LS | | | Research Triangle Park, NC 27709-2211 | | | | | | | | | | | | 11. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official | | | | | | Department of the Army position, policy or decision, unless so designated by other documentation. | | | | | | | | | | | | 12 a. DISTRIBUTION / AVAILABILIT | Y STATEMENT | 12 b. DISTRIBUTIO | N CODE | | | Approved for public release; distribution unlimited. | | | | | | - | | | | | | 13. ABSTRACT (Maximum 200 words) | | | | | | A new orthogonal suppressor | tRNA was derived from tRNA | ${ m A_2}^{ m Gln}$, which is not a substrate fo | r any <i>E. coli</i> aminoacyl-tRNA | | | synthetase, yet functions with the E. coli translational machinery. Importantly, S. cerevisiae E. coli glutaminyl-tRNA | | | | | | synthetase (GinRS) aminioacylates the yeast orthogonal tRNA in vitro and in E. coli, but does not charge E. coli tRNA. | | | | | | This suppressor tRNA and yeast GlnRS thus represent a completely orthogonal pair in <i>E. coli</i> suitable for the delivery of unnatural amino acids into proteins in vivo. A general method was developed to select for mutant synthetases capable of | | | | | | charging any ribosomally-accepted molecule onto an orthogonal suppressor tRNA. Finally, a rapid nonradioactive screen | | | | | | for unnatural amino acid uptake was developed and applied to a collection of 138 amino acids. Taken together, these | | | | | | steps clear the way for the final phase of our efforts. Selections for mutant yeast GlnRS enzymes that accept unnatural | | | | | | amino acids will be undertaken. These include: (1) a two-step selection with a positive selection based on suppression of | | | | | | b-lactamase in the presence of unnatural amino acids, and a negative barnase selection in the absence of amino acid; (2) | | | | | | a screen based on recognition of a suppressed OmpA epitope; and (3) a screen based on suppression of GFP. 14. SUBJECT TERMS 15. NUMBER OF PAGES | | | | | | | | | 2 | | | | | | 16. PRICE CODE | | | | | | | | | 17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT | | | OR REPORT UNCLASSIFIED | ON THIS PAGE UNCLASSIFIED | OF ABSTRACT
UNCLASSIFIED | UL | | | UNUMOSITED | OHOLASSIFIED | OITCLE LOUIS RULE | | | NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89) Prescribed by ANSI Std. 239-18 298-102 20010302 107 ## REPORT DOCUMENTATION PAGE (SF298) (Continuation Sheet) We have completed several key steps toward a general method to allow the site-specific incorporation of unnatural amino acids into proteins in vivo. Our approach involved the generation of an "orthogonal" suppressor tRNA that is uniquely acylated in E. coli by an engineered aminoacyl-tRNA synthetase with the desired unnatural amino acid. To this end, eight mutations were introduced into E.coli tRNA₂^{Gln} based on an analysis of the X-ray crystal structure of the GlnRS-tRNA₂^{Gln} complex and on previous biochemical data. The resulting tRNA satisfies the minimal requirements for the delivery of an unnatural amino acid: it is not acylated by any endogenous E. coli aminoacyl-tRNA synthetase including GlnRS, and it functions efficiently in protein translation. Repeated rounds of DNA shuffling and oligonucleotide-directed mutagenesis followed by genetic selection resulted in mutant GlnRS enzymes that efficiently acylate the engineered tRNA with glutamine in vitro. The mutant GlnRS and engineered tRNA also constitute a functional synthetase-tRNA pair in vivo. The nature of the GlnRS mutations, which occur both at the protein-tRNA interface and at sites further away, is discussed. A new "orthogonal" suppressor tRNA was derived from *S. cerevisiae* tRNA₂^{Gln}. This yeast orthogonal tRNA is not a substrate *in vitro* or *in vivo* for any *E. coli* aminoacyl-tRNA synthetase, including *E. coli* glutaminyl-tRNA synthetase (G1nRS), yet functions with the *E.coli* translational machinery. Importantly, *S. cerevisiae* G1nRS aminoacylates the yeast orthogonal tRNA *in vitro* and in *E. coli*, but does not charge *E. coli* tRNA₂^{Gln}. This yeast-derived suppressor tRNA together with yeast G1nRS thus represents a completely orthogonal tRNA/synthetase pair in *E. coli* suitable for the delivery of unnatural amino acids into proteins *in vivo*. A general method was developed to select for mutant aminoacyl-tRNA synthetases capable of charging any ribosomally accepted molecule onto an orthogonal suppressor tRNA. Finally, a rapid nonradioactive screen for unnatural amino acid uptake was developed and applied to a collection of 138 amino acids. The majority of glutamine and glutamic acid analogs under examination were found to be uptaken by *E. coli*. Large libraries of mutant yeast G1nRS enzymes were generated by DNA shuffling and subjected to selections for acceptance of ketone-containing amino acids and to general selections for acceptance of any unnatural amino acid. Unnatural amino acids were assigned to groups to maximize cellular uptake. Coverage of yeast G1nRS libraries was directed towards residues that were suspected of determining amino acid specificity based on the *E. coli* G1nRS structure. Positive and negative selections conditions are being explored to minimize background while preserving maximal sensitivity.